120 research outputs found

    Production of indigo by recombinant bacteria

    Get PDF
    Indigo is an economically important dye, especially for the textile industry and the dyeing of denim fabrics for jeans and garments. Around 80,000 tonnes of indigo are chemically produced each year with the use of non-renewable petrochemicals and the use and generation of toxic compounds. As many microorganisms and their enzymes are able to synthesise indigo after the expression of specific oxygenases and hydroxylases, microbial fermentation could offer a more sustainable and environmentally friendly manufacturing platform. Although multiple small-scale studies have been performed, several existing research gaps still hinder the effective translation of these biochemical approaches. No article has evaluated the feasibility and relevance of the current understanding and development of indigo biocatalysis for real-life industrial applications. There is no record of either established or practically tested large-scale bioprocess for the biosynthesis of indigo. To address this, upstream and downstream processing considerations were carried out for indigo biosynthesis. 5 classes of potential biocatalysts were identified, and 2 possible bioprocess flowsheets were designed that facilitate generating either a pre-reduced dye solution or a dry powder product. Furthermore, considering the publicly available data on the development of relevant technology and common bioprocess facilities, possible platform and process values were estimated, including titre, DSP yield, potential plant capacities, fermenter size and batch schedule. This allowed us to project the realistic annual output of a potential indigo biosynthesis platform as 540 tonnes. This was interpreted as an industrially relevant quantity, sufficient to provide an annual dye supply to a single industrial-size denim dyeing plant. The conducted sensitivity analysis showed that this anticipated output is most sensitive to changes in the reaction titer, which can bring a 27.8% increase or a 94.4% drop. Thus, although such a biological platform would require careful consideration, fine-tuning and optimization before real-life implementation, the recombinant indigo biosynthesis was found as already attractive for business exploitation for both, luxury segment customers and mass-producers of denim garments

    First-order reversal curve analysis of magnetoactive elastomers

    Get PDF
    The first magnetization loop and the first stress–strain cycle of magnetoactive elastomers (MAEs) in a magnetic field differ considerably from the following loops and cycles, possibly due to the internal restructuring of the magnetic filler particles and the matrix polymer chains. In the present study, the irreversible magnetization processes during the first magnetization of MAEs with different filler compositions and tensile moduli of the matrix are studied by first-order reversal curve (FORC) measurements. For MAEs with mixed magnetic NdFeB/Fe fillers the FORC distributions and magnetization distributions of the first major loop reveal a complex irreversible magnetization behavior at interaction fields Hu 600 kA m−1

    Nature-inspired sustainable medical materials

    Get PDF
    As life expectancy increases and health crises arise, our demand for medical materials is higher than ever. There has been, nevertheless, a concomitant increase in the reliance on traditional fabrication and disposal methods, which are environmentally harmful and energy intensive. Therefore, technologies need adaptations to ensure a more sustainable future for medicine. Such technological improvements could be designed by taking inspiration from nature, where the concept of “waste” is virtually non-existent. These nature-inspired solutions can be engineered into the lifecycle of medical materials at different points, from raw materials and fabrication to application and recycling. To achieve this, we present four technological developments as promising enablers – surface patterning, additive manufacturing, microfluidics, and synthetic biology. For each enabler, we discuss how sustainable solutions can be designed based on current understanding of, and ongoing research on, natural systems or concepts, including shark skin, decentralised manufacturing, process intensification, and synthetic biology

    Common miRNA patterns of Alzheimer’s disease and Parkinson’s disease and their putative impact on commensal gut microbiota

    Get PDF
    With the rise of Next-Generation-Sequencing (NGS) methods, Micro-RNAs (miRNAs) have achieved an important position in the research landscape and have been found to present valuable diagnostic tools in various diseases such as multiple sclerosis or lung cancer. There is also emerging evidence that miRNAs play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD) or Parkinson’s disease (PD). Apparently, these diseases come along with changes in miRNA expression patterns which led to attempts from researchers to use these small RNA species from several body fluids for a better diagnosis and in order to observe disease progression. Additionally, it became evident that microbial commensals might play an important role for pathology development and were shown to have a significantly different composition in patients suffering from neurodegeneration compared with healthy controls. As it could recently be shown that secreted miRNAs are able to enter microbial organisms, it is conceivable that the host’s miRNA might affect the gut microbial ecosystem. As such, miRNAs may inherit a central role in shaping the “diseased microbiome” and thereby mutually act on the characteristics of these neurodegenerative diseases. We have therefore 1) compiled a list of miRNAs known to be associated with AD and/or PD, 2) performed an in silico target screen for binding sites of these miRNA on human gut metagenome sequences and 3) evaluated the hit list for interesting matches potentially relevant to the etiology of AD and or PD. The examination of protein identifiers connected to bacterial secretion system, lipopolysaccharide biosynthesis and biofilm formation revealed an overlap of 37 bacterial proteins that were targeted by human miRNAs. The identified links of miRNAs to the biological processes of bacteria connected to AD and PD have yet to be validated via in vivo experiments. However, our results show a promising new approach for understanding aspects of these neurodegenerative diseases in light of the regulation of the microbiome

    Common miRNA Patterns of Alzheimer’s Disease and Parkinson’s Disease and Their Putative Impact on Commensal Gut Microbiota

    Get PDF
    With the rise of Next-Generation-Sequencing (NGS) methods, Micro-RNAs (miRNAs) have achieved an important position in the research landscape and have been found to present valuable diagnostic tools in various diseases such as multiple sclerosis or lung cancer. There is also emerging evidence that miRNAs play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD) or Parkinson’s disease (PD). Apparently, these diseases come along with changes in miRNA expression patterns which led to attempts from researchers to use these small RNA species from several body fluids for a better diagnosis and in order to observe disease progression. Additionally, it became evident that microbial commensals might play an important role for pathology development and were shown to have a significantly different composition in patients suffering from neurodegeneration compared with healthy controls. As it could recently be shown that secreted miRNAs are able to enter microbial organisms, it is conceivable that the host’s miRNA might affect the gut microbial ecosystem. As such, miRNAs may inherit a central role in shaping the “diseased microbiome” and thereby mutually act on the characteristics of these neurodegenerative diseases. We have therefore (1) compiled a list of miRNAs known to be associated with AD and/or PD, (2) performed an in silico target screen for binding sites of these miRNA on human gut metagenome sequences and (3) evaluated the hit list for interesting matches potentially relevant to the etiology of AD and or PD. The examination of protein identifiers connected to bacterial secretion system, lipopolysaccharide biosynthesis and biofilm formation revealed an overlap of 37 bacterial proteins that were targeted by human miRNAs. The identified links of miRNAs to the biological processes of bacteria connected to AD and PD have yet to be validated via in vivo experiments. However, our results show a promising new approach for understanding aspects of these neurodegenerative diseases in light of the regulation of the microbiome

    Virtual reality training versus blended learning of laparoscopic cholecystectomy:a randomized controlled trial with laparoscopic novices

    Get PDF
    This study compared virtual reality (VR) training with low cost-blended learning (BL) in a structured training program. Training of laparoscopic skills outside the operating room is mandatory to reduce operative times and risks. Laparoscopy-naĂŻve medical students were randomized in 2 groups stratified for sex. The BL group (n = 42) used E-learning for laparoscopic cholecystectomy (LC) and practiced basic skills with box trainers. The VR group (n = 42) trained basic skills and LC on the LAP Mentor II (Simbionix, Cleveland, OH). Each group trained 3 × 4 hours followed by a knowledge test concerning LC. Blinded raters assessed the operative performance of cadaveric porcine LC using the Objective Structured Assessment of Technical Skills (OSATS). The LC was discontinued when it was not completed within 80 min. Students evaluated their training modality with questionnaires. The VR group completed the LC significantly faster and more often within 80 min than BL (45% v 21%, P = .02). The BL group scored higher than the VR group in the knowledge test (13.3 ± 1.3 vs 11.0 ± 1.7, P < 0.001). Both groups showed equal operative performance of LC in the OSATS score (49.4 ± 10.5 vs 49.7 ± 12.0, P = 0.90). Students generally liked training and felt well prepared for assisting in laparoscopic surgery. The efficiency of the training was judged higher by the VR group than by the BL group. VR and BL can both be applied for training the basics of LC. Multimodality training programs should be developed that combine the advantages of both approaches

    Have genetic targets for faecal pollution diagnostics and source tracking revolutionised water quality analysis yet?

    Full text link
    The impacts on faecal pollution analysis using nucleic acid-based methods, such as PCR and sequencing, in health-related water quality research were assessed by rigorous literature analysis. A wide range of application areas and study designs has been identified since the first application more than 30 years ago (>1,100 publications). Given the consistency of methods and assessment types, we suggest defining this emerging part of science as a new discipline: genetic faecal pollution diagnostics (GFPD) in health-related microbial water quality analysis. Undoubtedly, GFPD has already revolutionised faecal pollution detection and microbial source tracking, the current core applications. GFPD is also expanding to many other research areas, including infection and health risk assessment, evaluation of microbial water treatment, and support of wastewater surveillance. In addition, storage of DNA extracts allows for biobanking, which opens up new perspectives. The tools of GFPD can be combined with cultivation-based standardised faecal indicator enumeration, pathogen detection, and various environmental data types, in an integrated data analysis approach. This comprehensive meta-analysis provides the scientific status quo of this field, including trend analyses and literature statistics, outlining identified application areas, and discussing the benefits and challenges of nucleic acid-based analysis in GFPD
    • 

    corecore